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Abstract—The coupling between perception and action has seldom been explored in sophisticated motor behaviour such as 3D
pointing. In this study, we investigated how 3D pointing accuracy, measured by a depth estimation task, could be affected by the target
appearing in different visual eccentricities. Specifically, we manipulated the visual eccentricity of the target and its depth in virtual
reality. Participants wore a head-mounted-display with an integrated eye-tracker and docked a cursor into a target. We adopted a
within-participants factorial design with three variables. The first variable is Eccentricity: the location of the target on one of five
horizontal eccentricities (left far periphery, left near periphery, foveal, right near periphery and right far periphery). The second variable
is Depth at three levels and the third variable is Feedback Loop with two levels: open/closed. Eccentricity is refactored into Motion
Correspondence between the starting location of the cursor and the target location with four levels: periphery to fovea, fovea to
periphery, periphery to periphery, fovea to fovea. The results showed that the pointing accuracy is modulated mainly by the target
locations rather than the initial locations of the effector (hand). Visible feedback during pointing improved performance.

Index Terms—Virtual Reality, Vision, Periphery, 3D, Pointing, Visual Feedback.

1 INTRODUCTION

Daily actions such as reaching and grasping require co-
ordinated control of both hand and eye movements. In this
context, humans need to process the dynamically changing
visual inputs, and often integrate information from other
sensory modalities such as audition, somatosensation (pro-
prioception, touch) etc. Previous studies have extensively
explored reaching behavior in both real and virtual worlds,
in which human observers usually fixate their gaze on the
target. However, it is often the case that the targets for
pointing and reaching are located in the periphery and
not in the focus of gaze. To name a few, typing characters
on a keyboard, using the mouse while browsing the web,
opening a door and even reaching for food, human oper-
ators can complete the task without explicitly focusing on
the targets, or with only a brief glimpse of the targets in
the periphery. This vein of typical behaviors has also been
observed in virtual reality (VR). In a virtual environment,
given a certain amount of familiarization/training, humans
behave in an automatic manner when pressing buttons on a
controller, selecting items from a floating virtual menu and
even manipulating 3D objects in space dexterously. All of
the above actions demand little, if any, direct fixation on the
specific object we are interacting with. Nevertheless, during
the coupling of perception-action, we exploit additional
multisensory cues (such as haptics and proprioception) to
streamline the interactions. The sensory cues from auditory
or tactile modalities could be weighted and integrated with
the visual information to facilitate the action. [1], [2], [3].

A large body of vision research has focused on investi-
gating the perceptual detection and discrimination of targets
with the dichotomy of foveal vs. peripheral visual acuity.
However, less is known about performance of interaction in
the different areas of the peripersonal space, i.e., the space
within arms reach. The peripersonal visual space comprises

of a combination of central fovea area, parafoveal area and
near peripheral and far peripheral areas. The central fovea is
the region with the highest visual acuity and highest resolu-
tion. It plays a crucial role for several tasks such as reading
or visual search where we need to localize specific objects.
Peripheral vision takes place outside the parafoveal range.
Our visual acuity decreases dramatically in the far periph-
ery (above 30 degrees). However, the peripheral vision is
still very important for the identification and recognition
of well-known shapes, forms and even movements during
action. [4].

Reaching tasks in VR in which the user is allowed to
make saccades and track the target object into the fovea
have been extensively explored [5], [6], [7]. However, as
described above, there is a lack of understanding about
how visuo-motor coordination works when interactions are
primarily performed in the periphery, i.e., when users are
not focusing on the objects; in both real-world and VR
scenarios. To the best of our knowledge, two pieces of
empirical research have investigated the role of peripheral
stimulation in VE. Jones et al. [8] studied the perception
of distance and spatial scale in a VE. Siderov et al. [9]
studied stereoscopic depth discrimination thresholds as a
function of spatial frequencies (low vs high) and retinal
eccentricity (less than or larger than 10 degrees). Results
indicate that distance judgments in virtual environments
might be considerably similar to those in real world. Above
10 degrees, the stereoscopic depth discrimination thresholds
for the high spatial frequency stimuli increase with eccen-
tricity. With that said, depth estimation during 3D pointing
has not been rigorously tested in VR. Until very recently,
eye-tracker devices could not be easily integrated and used
in typical VR display conditions such as head-mounted dis-
play (HMDs) or with stereoscopic glasses. Advancements in
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this area allow us to combine both technologies to deal with
the scientific question of depth estimation along different
visual eccentricities action in VR [10].

In this study, we explore how pointing accuracy and
depth estimation is affected by location of the target in the
periphery (eccentricity) during interaction. We conducted
an experiment in which users were equipped with a HMD
with an embedded eye tracking device. The participant’s
task was to dock a cursor into a target in a 3D VR envi-
ronment. Across the trials, we varied visual eccentricities,
depths and cursor visibility (feedback loop). Participants
were constrained to always fixate their gaze on a central
cross during the interaction. We evaluated their pointing
performance and potential perceptual biases (overestima-
tion or underestimation of depth) during the experiment.

2 RELATED WORK

Vision research [4], [11], [12], [13], [14], [15], [16], [17] has
identified how visual acuity and stereoscopy degrades as
a function of retinal eccentricity. Among the large body of
evidence in vision research, the basic task paradigm is visual
selection of the target. It is yet not known whether these
findings could be transferred to virtual reality.

Selection is also a fundamental task in VR systems, much
like in other user interfaces (Uls, e.g., the desktop). Unlike
desktop interfaces, where selection is accomplished by a
mouse-controlled /tracking cursor, selection in VR mostly
mobilizes the entire arm, either to reach and grasp objects
(e.g., with virtual hands) or to remotely point at them (e.g.,
ray-casting) [18], [19]. Virtual hand (and ray-based) selection
techniques are often referred to as pointing tasks, as they
specify a unique point or object in the environment, often
preceding subsequent operations like object manipulation
or travel [20]. Numerous 3D pointing studies have been
conducted (see e.g., [5], [6], [21], [22], [23], [24]), yet none
has specifically looked at selection of targets in peripheral
vision.

Since VR systems typically co-locate the input and dis-
play spaces, selection performance has been influenced by
several visual cues and sensory feedback mechanisms [25].
For example, early work investigated the influence of factors
like stereo and head-tracking [21], [26]. Results in this line
of work revealed that movement in depth is slower and less
precise than movements in a plane parallel to the screen.

Other work [27], [28], [29] explored near field egocen-
tric distance estimation with results indicating underesti-
mation. In contrast, depth estimation within reaching dis-
tances in early literature [30], [31] found overestimation,
while more recent work found a sort of central tendency
effect in AR [32]. There is, it seems, a lack of consensus
between published works and therefore more experiments
are needed. In addition, none of the previous work has
specifically distinguished between depth perception in the
central fovea and the periphery, nor the possible interaction
when pointing/motor actions happen across these areas.

Other work has compared pointing performance in real
world and in VR. This was based on the observation that
performance differences are likely attributable to perceptual
differences between physical reality and VR displays [22],
[23]. Notably, selection in VR systems suffers from various
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stereoscopic perceptual issues, including the well-known
stereo convergence-accommodation mismatch, and double-
vision due to targets and cursors residing in different depth
planes [5]. These results, however, reinforce the importance
of vision in selection tasks. Despite most evidence indicating
that real-world selection performance is indeed superior
to the one in VR [22], such studies cannot account for
the findings to vision alone, since several other technical
factors also contribute to the degradation in performance
in VR. These factors include input latency, tracker noise
[33], tracker registration [34], and tactile feedback during
performance [35]. Nevertheless, visual information remains
especially important, since the largest differences between
selections in real and virtual worlds occurred during the
correction phase of the motion, where visual feedback was
involved in a tight feedback loop and hence improved the
accuracy of the performance [22], [23], [24]. Overall, the
cited studies indicate that participants experience difficulty
when selecting targets outside of their foveal vision or when
crossing from one region to another, however, performance
remained consistent and was even enhanced when they
acted in a closed loop with sufficient sensory feedback
and within a small range of retinal eccentricities (below 10
degrees).

3 EXPERIMENT

The goal of our experiment was to understand the inter-
play between visual eccentricity of the targets and pointing
accuracy. Participants were equipped with a HMD with
integrated eye-tracker and had to dock a cursor into a
target. The study was approved by the Ethics committee
of Hamburg University.

3.1 Participants

Eighteen volunteers (age 22-38 years old, M=28.5) partic-
ipated in the experiment. Most of the participants were
students or staff members from the local department. All
participants had normal or corrected to normal vision. Three
of them wore glasses during the experiments. None of
the participants suffered from a disorder of equilibrium.
One of our participants reported strong eye dominance.
No other vision disorders have been reported. Interpupil-
lary distance was not individually adjusted. The experience
of the participants with 3D stereoscopic displays (cinema,
games etc.) was screened prior to the experiment. The mean
rating score was 3.1, with a range of 1 (no experience) to
5 (much experience). Moreover, all participants had certain
experience using head-mounted displays (HMDs) before.

3.2 Apparatus

Participants stood, wearing an HTC Vive head mounted
display and held the wand with their dominant hand (Fig-
ure la). Their non-dominant arm was resting on a Razer
Orbweaver keypad. The thumb button on the keypad was
used to confirm a response and initiate the next trials.
Inside the HMD, a Pupil Labs HTC Vive Binocular Add-
on was mounted for eye tracking'. In the closed loop trials

1. The pupil labs addon is equipped with a camera per eye, at-
tachment rings with IR illuminators and tracking software stack. This
results in 30 Hz gaze tracking.



IEEE TVCG, VOL. XX, NO. X, MONTH 2018

participants could see a spherical cursor of 4 cm diameter,
always co-located at the trigger position of the HTC Vive
wand (Figure 1b). In the open loop trials participants could
not see the cursor.

The cursor was positioned at the trigger rather than
the controller’s origin so that participants were essentially
pointing with their fingertip and as such have a stronger
sense of agency. Since participants used their off-hand for
button presses their grip was constant.

3.3 Stimuli and Task

Participants were immersed in a VR environment with only
a grid floor visible (Figure 1b). They were presented with
a spherical semitransparent target. The target was hinged
to the participant’s head’s frame of reference and thus
remained in position even if participants moved their head
(Figure 1h). This was implemented to ensure that the view
and line of sight of the participants did not change during
the task (i.e. no parallax cues). Standing allows them to have
a comfortable pose in contrast to other alternatives, such as
resting their head on a chin rest for a long time. Before the
experiment, individual arm length was obtained and the
target depth was setup with three levels: near, middle and
far with reference to the arm length [36] (see 3.4 Variables).

Participants were instructed to move and match their
cursor to a target sphere of equal diameter (4 cm) and
then press the button on their off-hand. They were asked
to maintain a balance between speed and accuracy. A top
down view of the task is shown in Figure 1. As soon as they
pressed the button, the behavioral data was recorded and
the target jumped to the next position. An auditory stimulus
was given to signal the button press. Target sizes were in
consensus with previous pointing experiments [5], [6]. Each
trial was given according to the condition by a combination
of two positions, the start position of acting hand and an
end position of the target.

In every trial there was a start area and an end area, one
in the fovea and one in the periphery, both in the fovea or
both in the periphery cf. Figure 1. All trials were random-
ized. Therefore, participants were tested for the four areas
of interest: fovea-to-periphery, fovea-to-fovea, periphery-to-
periphery, periphery-to-fovea.

The fixation point was located in the center of the field
of view (FOV) and at the Z axis midpoint between all given
target depths (Black X in Figure 1g). If the participant moved
his or her gaze away from the fixation point during a trial
(limited by 2 degree threshold), this trial was skipped.

In pilot tests, when participants moved their gaze away
from the fixation point we simply made the target disappear
and re-started the trial, forcing participants to move their
cursor back to the start position of the trial and repeat the
trial. However, we found that even if we forced participants
to go back to the starting point, since they had saccaded and
fixated on the target a few milliseconds ago, the target loca-
tion was fresh in their memory. This made the trial easier.
To avoid that, “failed” trials due to saccading were skipped
and re-shuffled back into the remaining trials queue, to be
performed later.

In early pilots of the experiment, the fixation point
would move along the Z axis to always match the depth
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of the current target. i.e. the target would always be on
the horopter?. This was attempted to avoid the problem of
diplopia (i.e. seeing double cursors) when the fixation point
is at a different depth than the manipulated cursor/target.
Nevertheless, when the fixation point jumped to a different
depth at each trial, despite staying at the center of the FOV,
it triggered an ‘uncontrolled” attentional process driven by
a visual search to find the fixation point again. This mode
of visual search was both frustrating and exhausting for
participants, while at the same time it triggered the eye-
tracker to mark the trial as invalid and shuffle it back in for
later. Therefore we opted to lock the fixation point’s depth.

Participants were encouraged to take a break whenever
they wanted. Overall, each participant completed 132 trials
(black arrows in Figure 1g x 3 repetitions) with a total of
2376 trials among all participants.

The process for each participant included pre-
questionnaires, instruction, ten training trials, experiment
and post-online-questionnaires. The participants needed to
wear the HMD for approximately 20 minutes. The total
duration for each participant was approximately 30 minutes.
All participants reported, in post questionnaires, a high level
of attentional engagement throughout the experiment.

3.4 Variables

We manipulated three variables in our experiment: (i) Ec-
centricity, (ii) Depth of the target, and (iii) Feedback loop, i.e.
visibility of the user’s cursor (open/closed loop).

Eccentricity refers to the angle, around a vertical axis
centered between the eyes, of the target with respect to
the center of the fovea. Eccentricity was manipulated with
10 degree increments at -20,-10,0,10,20 degrees. The fovea
accounts for approximately 4 ~ 5° in our central field of
view (FOV) [13], [37]. Therefore we tested 0 degree, where
the fovea is at its highest viusal acuity, 10 degrees i.e. the
boundary of perifovea, and 20 degrees i.e. well within the
periphery.

Depth refers to the depth of the target as a percentage
of arm length. If o denotes the arm length of the partici-
pant, previous research [36] suggests that mid-air pointing
performance works best at depths 0.618 - a followed by
0.854 - o, we extrapolated the two depths in the direction
of the eyes to obtain 0.382 - « as the shallowest target depth
(i.e. 0.618 — (0.854 — 0.618) - ).

Feedback Loop refers to open/closed loop with regards
to visual feedback. Open loop means participants did not
see their cursor whereas closed loop means normal cursor
display. Loop only affects the participant’s cursor, not target
visibility. The target was always visible.

Motion Correspondence is a refactoring based on the eccen-
tricity of the start and end points. There were four levels:
periphery to periphery, fovea to fovea, fovea to periphery
and periphery to fovea.

We measured total error as the euclidean distance be-

tween the cursor and the target at the time the participant
pressed the button e;piq1 = pfarget — P2rsor- The lower

total error is, the closer the cursor was to the target when

2. a line or surface containing all those points in a space of which
images fall on corresponding points of the retinas of the two eyes.
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(a) Picture from the experiment showing a user with an HTC Vive
head-mounted display (HMD) and motion controller, and the user’s
view of the virtual environment (VE) as well as the segmented camera

cursor

fixation point

ground plane

(b) Screenshot of the experiment. On the left, in red, the
fixed size target that needed to be matched. On the right
side, in orange, the participant’s cursor located at his or

images of the integrated eye tracking device. her fingertip.
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Fig. 1: Setup of the Experiment.

the button was pressed. We also measured depth error as the
depth component of the aforementioned euclidean distance
(i.e. only Z-axis error €gepth = Pcursor-? — Ptarget-Z.)- A
positive depth error means participants over-estimated the
depth while a negative one means underestimation.

4 RESULTS

We attempted to fit [38] the eccentricity on Total Error with
a standard quadratic model € = ? (¢ stands for error and
¢ stands for angle). Fitting this standard quadratic formula
resulted in a good fit (Fy 2445 = 46.45,p < 0.001, r? =0.88)
cf. Figure 2 middle and table 1.

Angle Error SD SE
20 3.11cm 0.0246 0.001300
-10  238cm 0.0186  0.000777

0 23lcm 0.0192 0.000801
10 243 cm 0.0185  0.000773
20 342cm 0.0264 0.001392

TABLE 1: Results for eccentricity effect on error.

We had five levels of visual eccentricity. We separated the
repeated measures analysis of variance (ANOVA) into “start
eccentricity” and “end eccentricity”. For the depth error, the
main effect of visual eccentricity at the start location was not
significant, F; g = 1.161, p=0.336. However, the main effect
was borderline significant at the end location, F4 63 = 2.337,
p=0.064. Bonferroni corrected comparison showed the error

was larger in the center (1.56 cm) than the one in left 10
degree of periphery (1.14 cm), p=0.038. This means that
visual eccentricity of the end position for the targets is
critical for pointing performance in this experiment.

There was a significant effect of target depth (near, middle
and far) on total error (Fy 17 = 6.47,p = 0.02,n*> = 0.27).
Results can be seen in Figure 3. Throughout the experi-
ments, participants generally overestimated the depth of
the target while the least overestimation was observed near
the fixation point. The main effect of depth on depth error
was not significant (Fy 34 = 2.373,p = 0.109,7% = 0.122).
Therefore, in the current task, although the depth of the
target affected total error, it did not affect Z-axis over/under
estimation.

Feedback Loop had a significant effect on depth error
(Fi117 = 9.416,p = 0.007,n> = 0.356) . Closed loop ma-
nipulation increased 3D pointing performance and reduced
both types of error. An aggregate plot can be seen in Figure
2 right.

We additionally explored the effect of motion direction
(i.e. forward or sideways) on our dependent variables, total
error and depth error. We grouped the differences of angles
between starting points and end points, there were three
conditions: “startless10 ” (start angle was 10 degrees smaller
than the one for end angle), “equal” and “startlarger10”
(start angle is 10 degree larger than the one for end an-
gle). The main effect of motion correspondence was not
significant, F 34 = 1.729, p=0.193. Therefore, the moving
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Fig. 3: Depth effect on Total Error and Depth Error.

trajectory made no difference, this indicates a good control
for the current testing conditions.

5 DISCUSSION

This study contributes three main findings: First, for a 3D
pointing task within arm’s reach in VR, human observers
overestimated the perceived depth of the target. This over-
estimation was robust across all experimental conditions. In
contrast, some previous studies have shown that egocen-
tric depth perception tends to be underestimated in VR,
especially over walkable distances; objects are perceived
smaller and closer than they should [28], [39]. Contrary
to these studies, depth (distance) in this work was always
within arm’s reach. Depth overestimation within reaching
distances, has also been reported in early literature [30],

[31]. However, none of these previous works has specifically
distinguished between depth perception in the central fovea
and the periphery, and the interaction between both.

Imperceptible depth cues [40] could be responsible for
the discrepancies observed in this experiment. Since targets
were anchored to the HMD there were no cues from motion
parallax and shadows on the ground were outside the field
of view of the observers. The specular highlight from the
virtual light on the cursor and target shifted minimally
within this short distance. The question remains, however,
why did participants have the largest depth overestimation
in the periphery to fovea condition? We postulate that the
nature of the task could be partially responsible for this.
Consider the following:

When starting and finishing a trial in the foveal region,
participants are moving the cursor along the depth axis.
They slide their cursor up and down along this depth axis
until they are satisfied that their cursor is inside the target
and is not occluding it. When a movement begins in the
periphery, however, participants are moving their cursor
in an arc-like trajectory tangentially to the horopter. Upon
finishing that movement, even if their cursor is slightly
behind the target, they don’t take the extra effort to switch
and correct along the depth axis. It is likely that they leave
their cursor where it landed, and that turned out to be on
average 1.73 cm behind the target. This begs the question,
however, why did was the same not occur on the fovea
to periphery trials? A possible explanation is that when
starting in the fovea participants have a better estimation
of the target depth and are able to perform a more precise
arc-like motion to reach the target. When starting in the
periphery, the start position of the trial already presents a
challenge and therefore the arc-like motion to come to the
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fovea results in further offset [30], [41].

The second finding is that participants performed better
when they pointed to a target appearing in the fovea area
than they did in the periphery area (Figure 2 left). Vision
research has addressed well a linear degradation of acuity
with distance [42], [43]. The degradation we are seeing in
this experiment as a function of target depth suggests that
the fixation point depth has a great influence in matching
the target depth, but not for overall pointing accuracy (total
error). Interestingly, we found that depth error (the percep-
tual bias) was smaller near the fixation point (such as left
10 degree of eccentricity) than the one on the sharp central
fovea (0 degree). This is possibly due to visual overlapping
between the “target’ and "fixation mark’, while the left visual
bias of viewing and the reduced overlapping render the
performance being better in the periphery near the central
fovea [44], [45], [46]. VR interface designers could use this
information to layout elements on the horopter for best
depth accuracy when depth performance is important.

The third main finding is the role of sensory feedback
during the pointing. Cursor visibility (Feedback loop) manip-
ulation also shows that the importance of visual feedback,
that has been shown with 3D pointing tasks [25], [47],
[48] also holds in the periphery. Surprisingly, lack of visual
feedback only caused a total error of 1,62 cm with a depth error
of 0,73 cm. i.e. Participants were able to match the targets
quite well despite not seeing their own cursor. In addition
to this, cursor invisibility accounts for the increased depth
overestimation in the fovea (Figure 2 Eccentricity, 0 degree
column). i.e. Motions that ended up in the fovea were much
less accurate when the cursor was invisible.

Actions in the periphery are typically preceded by a
saccade and a reach/grasping planning sequence in the
brain. By depriving this saccade from participants they are
left without the planning component and can only rely on
the cues at hand that, at certain depths, are affected by
diplopia. It remains unclear how the results would change
if the fixation point changed its depth to match the depth of
the target.

The cursors had 0.5 alpha opacity with one specular
highlight from the scene lighting. Colour occlusion (orange
sphere in front of red sphere) might have been used as a
strategy by participants. i.e. participants could have been
“trying” various depths until they see the orange colour of
the cursor covering the red target. We postulate that this
strategy was most probably not used because the majority
of trials were overestimated.

A potential improvement to this study might include
first measuring interpupillary distance and eccentricity lim-
its of each eye (nasal occlusion). Given these limits it might
make sense to assume that stereoscopy will start degrading
rapidly past those limits because the brain can only depend
on monocular cues. Finally, in this study we only investi-
gated targets horizontally across the horopter and it remains
to be seen how these results change when targets are laid out
vertically.

6 CONCLUSION

We presented the first controlled study of 3D pointing in the
periphery in virtual reality. The empirical evidence suggests
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that human observers still maintain the high accuracy of
3D pointing to the target within the arm reach in the VR
environment, though with general biases of depth over-
estimation in the current task. The visibility of the visual
feedback during the perception-action coupling loop is crit-
ical for precise interaction, especially when gaze-following
behavior could be largely constrained in a number of daily
scenarios. Movements starting in the periphery landing in
the foveal region exhibited significantly more depth overes-
timation than all other motion correspondence cases.

In ongoing studies, we include additional forms of
open/closed loop in other sensory modalities (such as no
force feedback vs. force feedback), and implement 3D point-
ing in a desktop version with different yet controlled action
trajectories, to test the generalization of these findings.
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